Carbohydrate – active enzymes (CAZymes) as drug targets and tools for medicinal lead compounds biosynthesis

George OSANJO, PhD.
Lecturer
Department of Pharmacology and Pharmacognosy
School of Pharmacy
University of Nairobi
Context

Carbohydrates encode vital biological information
Seven most common hexose monosaccharides units:

- D-Glucose
- D-Galactose
- D-Mannose
- N-Acetyl-D-glucosamine
- N-Acetyl-D-galactosamine
- Sialic acid
- L-Fucose
CAZymes: What are they?

Enzymes that modify carbohydrates and glycoconjugates

Currently known to comprise: 113 Glycoside hydrolases, 91 glycosyltransferase, 19 polysaccharide lyase and 52 carbohydrate-binding module (CBM) families

www.cazy.org

>6000 CAZymes listed
CAZymes Sources:

Influenza A virus neuraminidase (Kalemera MSc thesis, 2011)

Bacillus halodurans alpha- amylase (Hashim S, PhD thesis 2006)

B. strearothermophilus alpha-galactosidase (Nisone A, Osanjo G, Glycoconjugate Journal)

Thermotoga maritima alpha-L-fucosidase (Osanjo et al 2007, Biochemistry)

Glossina fuscipes lectizyme (Abubakar et al, 2006 Insect Biochem Mol Biol)
Circulating influenza viruses in Kenya
Neuraminidase activity

A Host cell
- Budding virus
- Neuraminidase cleaves receptor
- Hemagglutinin
- Virion
- Neuraminidase
- Release of new virions
- Continued viral replication

B Neuraminidase inhibitor
- Receptor containing sialic acid
- Virion
- Neuraminidase inhibitors
- No virion release
- Halted viral replication
FIGURE 6. Proposed mechanism for the hydration of Neu5Ac2en to Neu5Ac.
Fig 11. Amplification of the recombinant plasmid (pGEMT-Na).
The plasmid was diluted 10 times and used in amplification of the
neuraminidase gene to confirm the presence of the neuraminidase
insert.

M = Molecular weight marker Promega 1Kb
Lane 1 = Recombinant Pgemt-Na
Lane 2-7 = Amplified neuraminidase using the recombinant plasmid
as template

Recombinant pGEMT with
the H3N2 neuraminidase
insert (supercoiled and
circular forms

Amplified Neuraminidase

Aluvaala EK, unpublished
Possible Applications of influenza neuraminidase assays:

• Monitoring development of resistance to drugs

• Development of novel inhibitors

• Enzyme assay platforms during in vitro evolution
Applications in synthesis: Example of alpha- L-fucosidases
Transglycosylation using α-L-fucosidase from *Thermotoga maritima* (Tm α–fuc)

- Exoglycosidase, EC 3.2.1.51
- Family: GH29 (CAZy)
- Structure $(\beta/\alpha)_8$

Sulzenbacher et al. *J. Biol. Chem.*, 2004
\(\alpha \)-L-fucosidase

Autocondensation and transglycosylation

\(pNP \alpha \)-L-Fuc

\(pNPGal \)

\(\text{Fucose} 83\% \)

\(pNP \alpha \)-L-Fucp-(1→2)\(\beta \)-D-Galp

\(pNP \alpha \)-L-Fucp-(1→6)\(\beta \)-D-Galp

\(\sqrt{} \)
Mutagenesis (epPCR)

Library of mutated Tm α-fuc

Screen X-fuc (0.1 mM)

Selection of mutants with loss of hydrolysis

α-L-fucosidase Tm α-fuc
Molecular directed evolution

Analysis and selection of mutants with improved transglycosylation
α-L-fucosidase

Δ Directed evolution

Δ Separation of mutations

A

Initial PCR amplification to generate 662 bp (A662) and 732 bp (B732) DNA fragments.

B

2nd PCR step: Overlapping extension

Transglycosylation (semi-quantitative)

<table>
<thead>
<tr>
<th>WT</th>
<th>R147G</th>
<th>P196L</th>
<th>Y237H</th>
<th>T264A</th>
<th>Y267L</th>
<th>L322P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Effect of distance of mutations to T264A

WT

mut T264A

Y64

R254

T264

A264

R254
Synthesis of antigen H analogue

\[
\text{pNP } \alpha -\text{L-Fucp-(1→2)- } \beta -\text{D-Galp-(1→3)- } \beta -\text{D-Glcp}
\]

Glycosynthase
TtβGly

98%

\[
\text{pNP}\alpha -\text{L-Fucp-(1→2)- } \beta -\text{D-Galp-(1→3)- } \beta -\text{D-Glcp}
\]

64%

\[
\text{pNP}\alpha -\text{L-Fucp-(1→2)- } \beta -\text{D-Galp-(1→3)- } \beta -\text{D-Glcp}
\]

Ph α -L-Fucp-(1→2)- β -D-Galp-(1→3)- β -D-Glcp
√ CAZymes have great potential in as drug targets

√ Directed evolution permits significant improvement of CAZymes as biocatalysts

√ Using these enzymes we have achieved synthesis of the glycotopes Fuc a(1→2)Gal et Fuc a(1→2)Gal b(1→3)Glc.
√ Francis Mulaa
√ Eva Aluvaala
√ Tirus Wanyoike
√ Wallace Bulimo
√ Francis Mulaa
√ Charles Tellier
√ Michel Dion
√ Vinh Tran
√ Julien Drone
√ Claude Rabiller
√ Claude Solleux
√ Coraline Rigouin